
ThunderCore

(LitePaper)

Thunder Research

Rafael Pass and Elaine Shi

August 29, 2018

1 Introduction

Today, we are relying on, and trusting, powerful companies (e.g., VISA, Facebook, Uber, Wells
Fargo) with our data, our ability to financially transact, and engage in businesses with each other.
We don’t have the option of not “trusting” them and “verifying” how they operate. The emergence
of cryptocurrencies such as Bitcoin and Ethereum bring forth the promise of a new “decentralized”
Internet, which is more transparent, fair, and secure.

• Transparency : In a decentralized system, the rules of the game are public; anyone can verify
the validity of transactions and computations (i.e., computer code), and users/stake-holders
are not at the whim of a CEO of some company.

• Fairness: There are no entry barriers (e.g., you don’t need a bank account to transact),
censorship is impossible (e.g., money can’t be frozen), and anyone participating gets treated
in the same way.

• Security: Breaking the security of these protocols requires controlling a large fraction of the
participating nodes. This is in contrast to currently standard “trusted-third party” solutions
where a single company by either volition, or if hacked, can completely compromise the
security of the entire system.

These properties create exciting new opportunities for decentralized applications and mechanisms
to incentivize entities and individuals to collaborate and transact together.

The innovation that enables this development is the notion of a blockchain—that is, a method
for maintaining an append-only, linearly-ordered, list of data (e.g., transactions). This notion,
together with that of a smart contract—and in particular expressive (i.e., fully programmable)
smart contracts as in Ethereum’s systems—are central to the potential of realizing the above-
mentioned promise: We want decentralization not only for payment systems, but rather to enable
the above features for general applications. Indeed, in the last years, there has been an abundance
of, so-called, DApps (i.e., Decentralized Apps) created that operate on Ethereum’s virtual machine
(EVM). These include decentralized exchanges and games (such as CryptoKitties).
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The Bottlenecks: Scalability + Confirmation Times The emergence of DApps such as
Cryptokitties put a heavy toll on the Ethereum network, which resulted in transaction fees and
confirmation latencies escalating. The reason for this is the following:

• Low Throughput/Poor Scalability: Existing blockchains as employed by major crypto-
currencies (e.g., Bitcoin or Ethereum) require flooding the whole network with all transactions.
As a consequence, these blockchains do not scale well to handle a large transaction volume.
For instance, Bitcoin and Ethereum can handle less than 15 transactions/second. This small
throughput severely hinders a wide-spread adoption of such crypto-currencies, and prevents
a large-scale use of DApps. As a comparison, VISA handles 2000 transactions/sec (but of
course is not decentralized and does not enable DApps).

Although the throughout problem is the most major problem plaguing current blockchains,
there is also another issue that severely hinders some smart contract/DApps applications:

• Slow Confirmation Times: The security of Nakamoto’s blockchain protocol requires the
“block-time” (i.e., the average time until new blocks are created) to be significantly larger
than the maximum network latency [19]; this is why in Bitcoin, new blocks of transactions
get mined every 10 minutes, and a transaction is only considered confirmed once it has been
incorporated in a block and there are 5 subsequent blocks following it; thus it takes on average
one hour for a transaction to be confirmed (with low confidence). While Ethereum uses a
smaller block-time, the average confirmation time still remains on the order of one hour. These
long confirmation times hinder/or renders impractical several important smart contract/Dapp
applications. Indeed, for most “standard” centralized apps, users expect “instant” responses.

Thunder: “Decentralization with the Benefits of Centralization” As we have seen, cen-
tralized solutions currently have many benefits over decentralized solutions: a) they handle a large
volume of transactions/data, and b) they “almost instantly” confirm transactions and are thus more
amenable to apps which require “instant” responses. Yet, they fail to satisfy the above-mentioned
transparency, fairness and security desiderata, which we believe are crucial for a next generation
Internet.

The Thunder paradigm provides a bridge between the two: it is a fully decentralized method for
maintaining a public EVM-compatible blockchain, with the performance of centralized solutions:
Our Thunder protocol is a new blockchain that:

• achieves both high throughput and fast confirmation time;

• is robust up to a 50% attack (just as standard blockchains);

• directly supports EVM-smart contracts and EVM-DApps designed for Ethereum with little
or no modifications;

• comes with a mathematical proof of its security.

We believe it is the simplest, fastest, most expressive and secure blockchain solution out there.

While we are aware of several other recently suggested approaches for overcoming the above two
bottlenecks, these approaches are either restricted to only payments (and do not handle general
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smart contracts/DApps), or provide security only against a weaker 1/3-attack. Additionally, most
of these approaches are based on heuristic arguments, whereas our protocol is accompanied by a
rigorous proof of security; see Section 4 for more details.

The design of Thunder is inspired by a new theoretical paradigm for consensus proposed in
our earlier work, Thunderella [20], and provides the first practical instantiation of this general
paradigm.

2 The Thunder Protocol in a Nutshell

Our key idea is to combine a centralized approach with a decentralized approach, and thereby
achieve the scalability and speed of centralized approaches, while maintaining the decentralized
nature of the blockchain.

Following our Thunderella paradigm [20], the Thunder protocol combines any “standard”
blockchain—which we will refer to as the slow chain—with an optimistic “fast-path”. The fast
path protocol is executed by a committee of stake-holders and coordinated by a central authority
called the Accelerator. The Accelerator’s job is to linearize transactions and data (which is a task
that is hard to do in a decentralized way, yet easy for a central authority).

As long as a) the Accelerator is correctly doings its job, b) network conditions are good, and
c)> 3/4 of the committee are functioning correctly, we barely need to use the slow-chain at all;
instead, transactions can be confirmed on the fast-path by the committee using an extremely simple
and lean fast-path protocol. This protocol offers both high throughput and instant confirmation of
transactions.

But the fast-path only confirms new transactions assuming the above-mentioned good conditions
are met. When they are not (e.g., the Accelerator misbehaves or is under attack), we leverage the
“slow chain” to make sure that no damage can be done to the blockchain, and then to recover in
a provably sound manner. This results in a protocol that:

• Under optimistic conditions (that is, when the network is operating properly and the
systems is not under a major attack) support high throughput and instant confirmation.

• Under worst-case conditions, the blockchain remains secure even if the Accelerator is get
fully corrupted, as long as a) a majority of the stake-holders are honest, and b) the underlying
“slow-chain” remains secure.

To select the committee of stake-holders, we again rely on the slow chain. Anyone having stake
in our system, can put down an “escrow”—a so-called “stake-in”—onto the slow chain and that
qualifies the entity to become a committee member. Next, we subselect a committee of 500 nodes
(using a provably fair mechanism) among the entities that have put down the stake-in. Both
committee members and the Accelerator are rewarded for their work, both in terms of transaction
fee and from a pre-allocated “participation pool” (analogous to Bitcoin’s and Ethereum’s mining
rewards).

In our initial deployment, we are relying on Ethereum’s blockchain as our underlying “slow-
chain”; this blockchain currently is based on proof-of-work, but there are ongoing plans to replace
it with a proof-of-stake system. In our initial deployment, we will also only rely on a single
Accelerator; in later versions, we will extend the system to support multiple shards, each having
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their own dedicated Accelerator. Allowing anyone to create their own shards will also help establish
a healthy ecosystem where accelerators are incentivized to provide faster and more reliable service
(and accelerators providing poor service will die out). We here content ourselves with providing an
overview of the single Accelerator system.

As mentioned, our first release will be fully EVM compatible to enable direct migration of
existing Ethereum DApps.
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3 The Thunder Protocol

We here provide a more detailed high-level description of the Thunder Consensus protocol.

3.1 Consensus and Blockchains

Roughly speaking, a blockchain is simply a permissionless implementation of a primitive known as
state machine replication, or consensus in the distributed systems literature.

Consensus: A consensus protocol enables maintaining a “linearly ordered log” of transactions in
a distributed fashion such that the following two properties hold:

• Consistency: at any point in the execution, all honest participants have consistent logs of
transactions—that is, either their logs are identical, or one participant’s log is a prefix of the
other’s.

• Liveness: any honest protocol participant can propose to add a transaction; this transaction
is then guaranteed to be incorporated into their logs within some fixed, small amount of time;
additionally, whenever a participant sees some transaction in their log, the same transaction will
appear in every other participant’s log within some fixed, small amount of time.

In essence, these properties mean that from the view of the participants, they are communicating
with a trusted third party that maintains a global, ordered, append-only log of transactions that
anyone can add to—in essence a public ledger. Our goal here is to implement a consensus protocol
in the permissionless setting with high throughput and fast confirmation of transactions.

Blockchains: A formal definition of a blockchain can be found in [19]. Strictly speaking, a
blockchain does not directly give the above-described consistency property; rather, the consistency
property defined for a blockchain is that players have a consistent view of the blockchain when
dropping the last κ blocks, where κ is a security parameter : in other words, the last κ blocks
may be “unstable”, but everything before that has been stabilized (except with exponentially
vanishing probability as a function of the security parameter κ). (For Ethereum’s blockchain, think
of κ = 300.)

Other than the above-mentioned main properties of consistency and liveness, [19] also defines
a notion of bounded chain-growth: the length of the blockchain should grow at a well-defined pace:
not to fast and not too slow. We will require the use of a slow-chain that satisfies such bounded
chain-growth.

Pass et al. [19] show that Nakamoto’s protocol satisfies all the above properties once the mining
hardness is appropriately set (as a function of the network delay and total computing power)
assuming that a majority of the mining is done by honest users (a.k.a. “computational honest
majority”). More precisely, the Nakamoto protocol satisfies consistency and liveness if and only if
the mining-hardness is set as a function of the maximum network latency so that the block-time
(which in the Bitcoin system is set to 10 minutes) significantly exceeds the maximum network
latency. Ethereum’s protocol is related to Nakamoto’s and ought to satisfy them as well.

Security Contexts: We will distinguish between two different conditions on the network partic-
ipants.
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• Worst-case conditions W under which the protocol is guaranteed to provide consistency
and liveness (i.e., W are conditions under which the protocol is guaranteed to be secure). In
our case, W will be the conditions that:

1. the underlying slow-chain is secure (which in turn follows from computational honest
majority in the case of Nakamoto’s blockchain); and,

2. a majority of the committee is honest.

Under such worst-case conditions, confirmation times may be slow, and the transaction load
may be limited (just as is the case for Bitcoin and Ethereum).

• Optimistic conditions O under which the transaction volume can be large, and transactions
are “instantly” confirmed. In our case, O will be the conditions:

1. the slow-chain is secure;
2. the Accelerator is online and honest;
3. > 3

4 of the committee is online and honest.

Our new Thunder protocol will make use of a simple fast-path protocol in conjunction with an
underlying slow-chain to ensure worst-case security under W, and instant-confirmation and high-
throughput under O. As mentioned above, the key idea is to make use of the “fast-path” protocol
when things work well, and only use the slow-chain to recover from faults.

3.2 A Simple Fast-Path Protocol

Consider first the following simple fast-path protocol:

• We have a designated entity: the Accelerator.

• All new transactions are sent to the Accelerator; the Accelerator bundles up transactions into
micro-blocks, signs each micro-block with increasing sequence numbers seq, and sends out the
signed micro-block to a “committee” of players.

• The committee members “ack” (acknowledge) all Accelerator-signed micro-blocks by signing
them, but only ack at most one micro-block per sequence number.

• When a micro-block has received acks (i.e., signatures) from more than 3/4 of the committee
members, we refer to the micro-block as being notarized (and the notarization of the micro-
block is this collection of these signatures)1. Participants can directly output their longest
sequence of consecutive (in terms of their sequence numbers) notarized micro-blocks—all
transactions contained in them are considered confirmed. In this way, the fast-path instantly
finalizes transactions.

It is easy to prove (and well-known) that this protocol is consistent under the condition Wfast =
“> 1/2 of the committee members are honest”; additionally, it satisfies liveness with instant con-
firmation under the conditions Ofast = “1) the Accelerator is online and honest, 2) > 3/4 of the
committee members are online and honest”. In fact, under these optimistic conditions, we only

1In an actual implementation, one would make use of an aggregate signature scheme to describe the notarization
in a compact form.
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need 2 communication rounds to confirm a transaction! This approach is extremely practical and
indeed similar protocols are often used in practice—for instance chain.com uses a related protocol
for their permissioned consensus protocol.

The problem with this approach, however, is that the protocol does not satisfy liveness (even
“slow” liveness) under condition Wfast. If the Accelerator is cheating (or is simply taken down from
the network), the protocol halts. (Indeed, in this case chain.com would have to manually fix the
issue, which is impossible in a decentralized setting.)

3.3 How to Recover from Faults

To overcome this problem, we leverage the underlying “slow-chain” which we assume satisfies both
consistency and liveness. Roughly speaking, we deal with this as follows.

Heartbeats: For every length ` of the slow-chain, the Accelerator takes the hash h of the current
log (of the fast path) and sends out the tuple (`, h, seq) (where seq is the current sequence
number) to get notarized by the committee members (who all check that h is correct based
on the history they have seen); we refer to a notarized version of such a tuple (`, h, seq) as a
heartbeat. The Accelerator is subsequently required to post the heartbeat to the slow-chain.

Cool-down: Next, if some user notices that its transaction is not getting confirmed by the ac-
celerator/committee, some “evidence” of this will become apparent on the underlying slow-
chain—as we shall see shortly, the evidence is simply the fact that no heartbeat has been
observed on the slow-chain for a sufficiently long period of time. (Note that by liveness, and
the bounded chain growth properties of the slow-chain, if Accelerator and more than 3/4 of
the committee are online and honest, we are guaranteed that a heartbeat for length ` gets
incorporated close to length `). Whenever such evidence of cheating (i.e., no recent heartbeat
are contained on the slow-chain) has been found, we enter a “cool-down” period, where com-
mittee members stop signing messages from the Accelerator, yet we allow anyone to post any
“new” notarized transactions (which were not included in the most recent heartbeat) to the
slow-chain. The length of the cool-down period is counted in blocks of the slow-chain (say κ
blocks where κ is a security parameter).

Slow mode: Finally, after the cool-down period ends, we can safely enter a “slow period” where
transactions only get confirmed in the slow-chain blockchain (and the fast-path is no longer
active). We stay in the slow-chain for an appropriate amount of time counted in blocks on
the slow-chain (e.g., enough blocks to restore or replace a faulty Accelerator) and can next
reboot with a new epoch of the fast-path protocol; more details on the reboot step can be
found in Section 3.4.

Let us point out the reason for having a cool-down period: Without it, players may disagree on
the set of fast-path transactions that have been confirmed before entering the “slow mode”, and
thus may end up with inconsistent views. The cool-down period enables honest players to post all
notarized transactions they have seen to the slow-chain, and thus (slowly) reach consensus on this
set of transactions; once we have reached this consistent view (at the end of the cool-down), we
can finally fully switch over to confirming new transactions on the slow-chain.
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Collecting evidence of cheating: “yell” transactions It remains to explain how to collect
evidence that the Accelerator (and/or committee) is cheating or is simply “offline”. If a player
notices that his or her transaction is not getting confirmed by the Accelerator or committee, he or
she can send a special yell transaction (which contains the transaction it wants to see confirmed)
to the underlying slow-chain. The Accelerator is additionally instructed to confirm all such yell

transactions it sees on the slow-chain.
Now, if a committee member sees some transactions on the slow-chain that have not gotten

notarized within a sufficiently long amount of time—counted in blocks in the slow-chain (say within
κ blocks)—they know that the Accelerator (or a large fraction of the committee members) must be
cheating or offline. At this point, the committee member will stop signing heartbeat messages.

So, as long as just 1/4 of the committee is honest, a cheating Accelerator will be “choked”—
no new heartbeats by Accelerator will be notarized. Consequently, everyone that observes the
slow-chain will enter the “cool-down” phase and subsequently the slow mode.

3.4 How to Reboot the Fast-path

Once we have entered the slow mode where all transactions are being posted on the slow-chain,
we need to have a way to return to the fast path. The easiest method is simply to stay in the
slow-mode for a fixed (e.g., 100κ) number of blocks on the underlying slow-chain and switch to
“fast-path” confirmation after these blocks; the hope is that the accelerator can be repaired during
this time (and if it is not, transactions need to be confirmed on the slow path).

3.5 How to Select the Committee

So far we have deferred the discussion of how the committee is selected. There are many approaches
for selecting the committee among the stake-holders. We focus here on one particular method.

We require anyone who wishes to serve on the committee to put down an escrow on to the slow-
chain. Next, we subselect a group of 500 members from the entities having put down an escrow on
the slowchain. We warn the reader that although this committee selection approach seems simple,
getting it right is non trivial. More precisely, we rely on a method from our earlier work Snow
White [10]:

• The committee that is active when the slow chain has a length ` is selected based on the
stake-holders who have put up an escrow by the time the slow-chain reaches length ` − 2κ,
and (depending on the selection method used) some nonce taken from the slow-chain at length
`− κ.

As explained in more detail in our earlier work [10], the reasons for the 2κ “look-back” is to prevent
against attacks where an attacker adaptively selects its keys to have a higher probability of getting
elected to the committee.

This approach ensures consistency and liveness under the conditions W = “1) the slow-chain is
secure, 2) > 1/2 of the stake holders with a valid escrow are honest”; and achieves fast confirmation
under the conditions O = “1) The Accelerator is online and honest, 2) > 3/4 of the stake holders
with a valid escrow are online and honest”.
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4 Comparison with Related Initiatives

We provide some comparisons with related initiatives.

• Offchain payment channels (e.g., Lightning Networks [1] and Raiden networks [2]) and state
channels [12, 17] support fast offchain payments, but existing systems offer little to no smart
contract programming support; moreover, parties need to engage in a prior setup.

• Several initiatives rely on “classical-style” consensus methods to build a decentralized cryptocur-
rency. For example, Zilliqa [3] and Tendermint [15] rely on PBFT [9] or its variants to reach
consensus. In comparison with Thunder, which combines an asynchronous fast path and a syn-
chronous “fallback”, PBFT instead relies on an asynchronous recovery path. This means that
1) PBFT can tolerate at most < 1

3 fraction corruption due to a well-known lower bound [11] (in
contrast, our approach tolerates up to a 50% attack); 2) PBFT requires more rounds of voting
in the normal path (which is necessary for an asynchronous recovery) and thus is at least twice
as slow as our protocol; and 3) in comparison, our approach is conceptually much simpler than
PBFT and thus friendlier to implementation and large-scale deployment [13,18].

• The beautiful work of Algorand [16] designs a new synchronous state machine replication protocol
and builds a cryptocurrency on top. Just like ours, their protocol is provably secure. However,
it only tolerates up to 1

3 corruptions; moreover, their approach requires complete redesign of the
consensus layer, whereas our approach allows us to accelerate any existing blockchain using a
simple fast-path protocol.

• Several works rely on a DAG-based approach [4,22] (rather than chain-based) to prevent double-
spending. These works do not realize our notion of a public ledger; they also do they support
general smart contracts/DApps.

• Dfinity’s approach [5] relies on offchain voting on blocks to reach finality in “2 blocks of time”.
Their approach does not improve throughput w.r.t. to the underlying slowchain.

• Ethereum’s Casper [7, 8] also relies on offchain voting on blocks, but they do so to checkpoint
blocks and not to improve speed and throughput. The elegant Plasma framework by Poon and
Buterin [21] and several sharding initiatives [3, 6, 14] are conceptually related to ours. These
approaches are orthogonal and complementary to our effort.
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