

Consensus Protocols 101

Preliminaries 2
Introduction 2
What is a consensus protocol? 3
Major types of consensus protocols 3

(1) Nakamoto Consensus 3
(2) Classical Consensus 4
“DAG” 5

Byzantine Faults and Crash Faults 6
Crash Faults 6
Byzantine Faults 7
Synchronous, Partially Synchronous, Asynchronous 8

Synchronous 8
Partially Synchronous 8
Asynchronous 9

Notes 9
Fault tolerance bounds: Why ½ and ⅓? 9

Synchronous 10
Partially Synchronous 10
Note on fault tolerance bounds 11

Takeaway 11
Liveness vs Consistency 11
Proof-of-Work 12

PBFT (Practical Byzantine Fault Tolerance) 14
Terminology 14
Normal-case operation 14
View-Change 15
Takeaway 16
Alternatives 17

Proof-of-Stake 18
Proof-of-Work Recap 18
Original Proof-of-Stake 18
Committee based Proof-of-Stake 19
Long-Range Attacks 19
Delegating Stake 19

DPOS BFT 20

Security 20
Summary 21

PaLa 22
Setup 22
Protocol 22
Committee Reconfiguration 25
Doubly Pipelined PaLa 27
Performance 28
Takeaway 28

Conclusion and More! 30

Thunderella 31
The Protocol 31

Fast-Path 32
Slow-Chain 32
Fallback and Recovery 33
Yell Messages 34

Takeaway 35

Preliminaries

Introduction
This document is intended for those who are interested in learning more about consensus
protocols. The current landscape of blockchain resources has a plethora of competing
resources with no clear metric for gauging their quality. This document collates what we believe
are the most important facts to understanding ​blockchain consensus​ in an accessible way.

By the end of this document, we’ll arrive at a detailed description of the PaLa consensus
algorithm. In particular, we believe PaLa to be the simplest and most performant consensus
algorithm of its class and thus treat it as a first class citizen in understanding distributed
consensus.

This document is written by ​Gengmo Qi​ and ​Peter Lu​ and proudly supported by ​ThunderCore​.

https://twitter.com/GengmoQi
https://twitter.com/_kitchen?lang=en
https://www.thundercore.com/

What is a consensus protocol? 1

Consensus is an abstraction for distributed systems where a set of nodes seek to agree on an
ever-growing linearly-ordered log, such that two important properties are satisfied:

● Consistency​: all honest nodes’ logs agree with each other
● Liveness​: all honest nodes are able to make progress on their logs

In context of blockchain, consistency (sometimes called “safety”) means that there is a single
canonical chain (no forks) that all honest nodes will agree on. Liveness means that honest
nodes on the network are always able to add new blocks to the blockchain. When all nodes
agree on a block, we say the block is ​finalized​.

Major types of consensus protocols
We are interested in the following two broad classes of consensus protocols:

(1) Nakamoto Consensus
Nakamoto consensus, sometimes also called chain consensus, use Nakamoto’s elegant
longest-chain fork choice rule for reaching consensus with high probability and is a
breakthrough in distributed consensus. These protocols are conceptually simple and tolerate
minority corruptions​ (50%). Further, not only has blockchains’ robustness been empirically
proven in ​real world public blockchain networks holding billions in assets​, earlier works have
also shown mathematically that Nakamoto consensus indeed achieves certain robustness
properties in the presence of sporadic participation and node churn that none of the classical
style protocols can attain. Unfortunately, known Nakamoto consensus protocols suffer from 23

1 The definition for consensus we give here is sufficient for all except those attempting to write formal
proofs. See ​https://eprint.iacr.org/2017/913.pdf#page=19​ for a rigorous definition.
2 ​https://eprint.iacr.org/2016/919.pdf
3 ​https://eprint.iacr.org/2016/918.pdf

https://coinmarketcap.com/currencies/bitcoin/
https://eprint.iacr.org/2017/913.pdf#page=19
https://eprint.iacr.org/2016/919.pdf
https://eprint.iacr.org/2016/918.pdf

slow transaction confirmation times and low throughput. For example, Bitcoin has a 10-minute
block interval and requires several blocks to confirm a transaction with sufficient confidence.
Earlier works that mathematically analyze Nakamoto consensus have pointed out that ​such
slowness is inherent for Nakamoto protocols since the expected block interval must be set to be
sufficiently large for the protocol to retain security​. 4

(2) Classical Consensus
Classical consensus protocols reach deterministic consensus through voting. These protocols
confirm transactions fast relative to Nakamoto consensus as the consensus network size is
fixed and progress can be made as soon as the required votes are seen. These protocols
typically use the ​partially synchronous​ (or partially asynchronous) network model, and thus can
only tolerate at most ⅓ (33%) faults.

4 ​https://eprint.iacr.org/2016/454.pdf

https://eprint.iacr.org/2016/454.pdf

“DAG”
You may also hear of still a third class of blockchain protocols sometimes called “DAG”
protocols (a name that says little about the mechanism for consensus). Such protocols include
SPECTRE​, ​The Tangle​, ​Avalanche​ and ​PARSEC​, and ​Hashgraph​. These protocols achieve
consensus on non-linear or eventually linear directed acyclic graph (DAG) of blocks using a
variety of means. These protocols​—​which often claim to be the logical evolution of blockchain5

—​are interesting both in a theoretical and practical setting. We omit discussing them in this
article to avoid complexity. This article still provides the fundamentals needed to understand
such protocols so if they are of interest to you, please keep reading!

5 In blockchain, technological imperative and social progress are conflated with so much arrogance and
grace. The history for this nascent field is still being written with affirmative shots being fired in the air by
all competitors as a necessary precondition for victory. The reality must be excavated from the details
strewn about in the battlefield.

https://medium.com/@avivzohar/the-spectre-protocol-7dbbebb707b5
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
https://medium.com/safenetwork/parsec-a-paradigm-shift-for-asynchronous-and-permissionless-consensus-e312d721f9d8
https://en.wikipedia.org/wiki/Hashgraph

In the next two sections, we’ll get into some background information and build up to a rigorous
understanding of how we arrive at the tight ⅓ and ½ fault tolerance bounds mentioned above.

Byzantine Faults and Crash Faults
For the purpose of this article, we distinguish between two types of faults

Crash Faults
A crash fault is just that. Even the best run servers do not have 100% uptime and thus crash
faults must be addressed in any robust distributed system. A crashed node will stop responding
to messages and may lose data. Thus a crash fault tolerant consensus protocol must handle
some nodes dropping offline arbitrarily and must allow them to recover data from non-faulty
nodes. Examples of crash fault tolerant consensus protocols include ​Raft​ and Z​ookeeper​. Raft
is simple and commonly taught in introductory courses to consensus. This ​interactive tutorial​ is
a great place to learn more about Raft and consensus in general.

https://raft.github.io/
https://zookeeper.apache.org/
http://thesecretlivesofdata.com/raft/

Byzantine Faults
A byzantine node may behave arbitrarily in the network including not sending messages and
sending deliberately misleading messages selectively to other nodes on the network. A
byzantine fault may present different symptoms to different observers. It is difficult to declare it
failed and shut it out of the network, because the network must first reach a consensus
regarding which component has failed in the first place. The term is derived from the ​Byzantine
Generals' Problem​, where actors must agree on a concerted strategy to avoid catastrophic
system failure. Some of these actors may be traitors deliberately attempting to sabotage a
coherent strategy.

A crash fault tolerant algorithm can tolerate crash faults up to a certain threshold. A byzantine
fault tolerant algorithm is able to tolerate byzantine faults up to a certain threshold. In the case
of blockchain consensus, we can imagine byzantine faults as malicious actors on the network
trying to ​pull off a double spend​ or bring the chain to a halt.

https://people.eecs.berkeley.edu/~luca/cs174/byzantine.pdf
https://people.eecs.berkeley.edu/~luca/cs174/byzantine.pdf
https://medium.com/formosa-financial/a-51-attack-happened-how-did-it-happen-to-bitcoin-gold-da131a8080a6

You might notice classical consensus protocols are sometimes also called “BFT consensus”
protocols. This usage is prevalent and misleading. Nakamoto consensus protocols are also BFT
but it is not a BFT consensus protocol in this sense. Thus we’ll encourage the use of the term
“classical consensus” instead.

Synchronous, Partially Synchronous, Asynchronous
These are assumptions a consensus protocol requires from the underlying network.

Synchronous
● Synchrony assumes that there is a ​known​ upper bound on all message delay. That is,

all messages must be delivered in some amount of time, and all participants in the
network know how long it takes for messages to be delivered.

● Can tolerate up to ½ byzantine faults
● It turns out the synchronous network model can be overly restrictive with strict

limitations. The more nuanced weakly synchronous model is a more practical option. 6

Partially Synchronous
● Sometimes also known as partially asynchronous.
● Partial synchrony assumes that there is an ​unknown​ bound on network latency, we do

not know ahead of time what it is. The system behaves like a synchronous one most of
the time, but sometimes network delay that exceed the bounds may happen.

● The partially synchronous model is relatively realistic. Unknown delays do occur in real
life systems and we may assume that network infrastructure is reliable enough to always
deliver messages eventually.

● Can tolerate up to ⅓ byzantine faults

6 ​https://eprint.iacr.org/2019/179.pdf

https://eprint.iacr.org/2019/179.pdf

Asynchronous
● Asynchrony assumes that there are ​no bounds​ on network latency even between

correctly functioning nodes. There is no common global clock thus algorithms cannot
make timing assumptions and can’t use timeouts.

● The ​FLP impossibility​ proves it is impossible to create an algorithm which is ​guaranteed
to reach consensus in any specific finite amount of time if even a single faulty node is
present.

○ That is to say, it’s impossible to have both liveness and consistency.
● However, there do exist (randomized) algorithms that can achieve consensus within T

seconds with ​probability exponentially approaching 1​ as T grows.
○ In other words, under the asynchronous setting, if you have bad actors around,

no deterministic algorithms can even agree on the value of a single bit.
● Fault tolerance:

○ Deterministic algorithms: 0%, cannot tolerate faults
○ Probabilistic algorithms​: up to ⅓ fault tolerance

Notes
● In practice, the right choice of consensus algorithm, and thus the right choice of the

underlying consensus protocol is very context specific. For example, synchronous
network assumptions may be appropriate if ½ fault tolerance is needed and if the
assumed maximum network delay is very high or the underlying network is very reliable
(e.g. a private network).

● You might hear that asynchronous and partially synchronous protocols are more
performant than synchronous. Fitting the assumptions of the network, synchronous
protocols typically wait for a period of time for all messages to arrive before reaching
consensus whereas asynchronous protocols make a decision as soon as some
message threshold is reached. This is not a rule. There are, for example, ​synchronous
protocols that have “asynchronous performance”​.

Fault tolerance bounds: Why ½ and ⅓?
You must have seen or heard expressions like ​majority honest​, ​tolerate minority corruptions;
tolerate ⅓ corruptions​ multiple times. In the following, we aim to explain the bounds on fault

https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://link.springer.com/chapter/10.1007%2F978-3-540-77444-0_7
https://eprint.iacr.org/2018/980.pdf
https://eprint.iacr.org/2018/980.pdf

tolerance under different network assumptions. For the curious reader, please see ​this paper​ for
a more thorough analysis.

Synchronous
● Intuition: Majority rule, we want the correct choice to have more than half the votes.

○ By synchronous network assumptions, we can assume that every node on the
network has seen every vote after a fixed amount of time has passed at which
point a decision can be made.

● Explanation : 7

○ Assume a total of ​n ​ nodes, among which ​f ​ is faulty(behave arbitrarily). Once all
messages are received (applying synchrony assumption), we want to have at
least ​f+1 ​correct messages to outnumber the ​f ​ faulty messages.

■ n ≥ f+(f+1)

■ f ​≤ ​ (n-1)/2
■ f < n/2

● “Up to ½ byzantine-fault tolerance”

Partially Synchronous
● Intuition: A single dishonest node can fool 2 other nodes by sending conflicting

messages to each node.
○ The conflicting messages may not be detected in time because of the partially

synchronous network assumption means there is an ​unknown bound​ ​on the
network latency.

● Explanation : 8

○ Assume a total of ​n ​ nodes, among which ​f ​ are faulty (may behave arbitrarily).
○ Assume a node received ​x ​ messages.
○ The ​f ​ faulty nodes may choose ​not to send any message​, thus in the worst case

a node will receive ​at most​ ​n-f ​ messages, and make a decision based upon
them.

■ (1) x ​≤ ​ n-f
● “There is at most ​n-f ​ messages”

○ Among the ​n-f ​ messages, it is unclear which ones are from the honest ones, or
faulty ones. It is possible that the nodes that did not respond are not faulty, but
we didn’t get the message only because of network delay.

○ Therefore, ​f ​ of those responses might be faulty, which means ​all faulty nodes
may have sent false messages.

○ To make a decision, we have to guarantee there is at least ​f+1 ​ correct
messages to outnumber the ​f ​ faulty messages.

■ (2) x ≥ f+(f+1)

7 See ​Miller et al.​ for a rigorous proof.
8 See ​Lamport et al.​ for a rigorous proof

http://groups.csail.mit.edu/tds/papers/Lynch/jacm88.pdf
https://socrates1024.s3.amazonaws.com/consensus.pdf
https://lamport.azurewebsites.net/pubs/reaching.pdf

● “There must be enough responses from non-faulty nodes to
outnumber those from faulty ones”

○ By equations ​(1) ​ and ​(2) ​:
■ f+(f+1) ​≤ ​x ​≤ ​ n-f
■ f ​≤ ​ (n-1)/3
■ f < n/3

● “Up to ⅓ byzantine-fault tolerance”

Note on fault tolerance bounds
● So far we have informally established that it’s possible to achieve consensus with ½ fault

tolerance in a synchronous network​—​messages broadcasted by any honest node are
guaranteed to be received by all other honest nodes within some known time period.

● The maximum achievable fault tolerance drops to ⅓ if we relax to partially​ synchronous
network assumptions​—​instead of having a known upper bound, the bound of network
delay is unknown.

● It’s unclear if this will be used in practice, but If we add ​even more assumptions​ we can
increase fault tolerance ​all the way to 99%​.

Takeaway
It doesn’t make sense to talk about a protocol’s fault tolerance without knowing the assumptions
it is based upon 🤔. When you are comparing across different protocols in the future, do not be
misled by claims such as “​Our protocol X is 50% fault tolerant, thus more secure than protocol Y
which is 33% fault tolerant ​😈”.

Liveness vs Consistency
You may sometimes hear that PoW favors liveness over consistency. Any PoW node has a
chance to mine a new block and contribute to the blockchain’s liveness whereas there is no
consistency until sufficient time has passed. In Nakamoto consensus, liveness comes for free as
any node can make a new block whereas consistency must be carefully reasoned.

In classical consensus, the opposite is true. Consistency is a straightforward argument based
on the pigeonhole principle. With a ⅔ voting threshold, it’s clear that at least ⅓ nodes must be
byzantine to create a split vote. In the picture below, groups A and B are both ⅔ votes for
conflicting proposals. Honest voters do not cast conflicting votes. Thus, group C is byzantine
and votes for both groups. Group C must contain at least ⅓ of the nodes in order to create two
⅔ majority votes for conflicting proposals.

https://vitalik.ca/general/2018/08/07/99_fault_tolerant.html

With only honest nodes, there might be a split vote (say ½ vote in group A and ½ vote in group
B). In this case neither groups A or B will ever reach ⅔ majority since no honest node casts
conflicting votes. Without further mechanisms to make progress, liveness comes to a halt. Thus,
in classical consensus, consistency is easy and liveness is hard.

Proof-of-Work
So we now know enough to understand the formal properties of the Proof-of-Work (PoW)
consensus protocol. PoW is the very original Nakamoto consensus protocol. Using the longest
chain fork choice rule, blocks are finalized when they are deep enough into the history. This
works because the more blocks that have been mined on top of any given block, the more
“work” is required to fork it. The protocol has ​probabilistic​ finality meaning consistency is
achieved with ​very high probability​. 9

While the bitcoin paper did not make explicit network assumptions, we can interpret the protocol
as functioning in the synchronous network setting. Blocks are required to propagate through the
entire network such that each node is likely mining on top of the most recent block. Another way
to look at this is to say that PoW is not ​partition tolerant​. A network is partitioned if there are
subsets who can speak within their group but not to each other. Since hash power is the only
requirement for creating blocks, we can see that each partition in a PoW network is capable of
extending and finalizing their own chain.

Finally, as we read earlier, the synchronous network have up to ½ fault tolerance. Indeed PoW
achieves this tight bound. This is clear if you understand the “51% attack” where an adversary
with majority of the network hash power creates a fork from before a finalized block that
becomes the new longest chain thus breaking consistency.

9 This might seem bad at first, but remember that blockchain is built on cryptography primitives which
themselves are only secure to attack with very high probability? How high you might ask? Well let’s just
say you’d have better luck finding a specific atom in the universe.

PBFT (Practical Byzantine Fault Tolerance)
In this section, we’ll give a high level overview of the PBFT consensus algorithm. While we
consider newer protocols including PaLa to be a strict upgrade over PBFT. Understanding
PBFT is still crucial. Many of the terminology and ideas behind newer classical consensus
protocols come from this protocol.

We use PBFT as a learning tool from which we will establish the language and ideas that PaLa
and Thunderella protocols will build on. Note that the protocol presented here is modified and
simplified to be applicable for blockchain consensus. The core concepts remain the same. 10

Source: ​Practical Byzantine Fault Tolerance​,OSDI, 1999.

Terminology
The algorithm is modeled as a state machine in a distributed system that is replicated across
different ​replicas​, among which one of the replicas is the ​primary​ and the rest are ​backups​.

Normal-case operation
On a very high level, PBFT consists of the following steps in the normal-case operation:

10 In particular, this modified protocol omits checkpoints (which are an implementation detail) and null
proposals (which allow multiple outstanding proposals during a view change, some of which may be be
skipped).

http://pmg.csail.mit.edu/papers/osdi99.pdf#page=5

● Request: the user sends ​transactions​ to the primary.
● Pre-prepare: the primary produces a ​proposal​ containing transactions and forwards to all

replicas.
● Prepare: Upon receiving a proposal, backups will verify it, and if it succeeds, they will

broadcast ​prepare​ message to ​all other replicas​. Backups do nothing if verification fails.
This is the ​first round​ of voting.

● Commit: Upon receiving ​prepare​ messages from ⅔ of all backups, replicas will now
broadcast ​commit​ messages. This is the ​second round ​of voting.

● Reply: the client sees the result of consensus.

In most circumstances, normal-case operation requirements are met and the primary is able to
rapidly process new transactions. Since only ⅔ of backups need to agree in the prepare and
commit phase, PBFT can already tolerate up to ⅓ of backups going or even acting byzantine.
But what happens if the primary goes down?

View-Change
If the primary has failed, a subroutine called ​view-change​ will be carried out. On a high level, ​the
view-change protocol provides liveness by allowing the system to designate a new primary
when the former fails​. When replicas see no new progress after some time, they broadcast a
view-change message indicating that they want to advance to the next ​view​. The view-change
begins when ​view-change messages​ from ⅔ of all replicas are collected.

During a view change, replicas may not agree on the latest state of consensus​—​remember that
the primary was responsible for leading consensus up until now. Since we are in the partially
synchronous network setting, we can not guarantee that all replicas will see a ⅔ majority vote in
the first round if it exists. A replica who sees a ⅔ majority vote for a proposal in the first round
can not assume that others have seen it as well and therefore there is no agreement.

Thankfully, PBFT required 2 rounds of voting where replicas do not vote in the second round
until they’ve seen results from the first round. Thus, upon seeing ⅔ majority vote in the ​second
round​, the replica is guaranteed that at least ⅔ of replicas have seen results from the ​first round​.
This knowledge about knowledge replaces the synchrony assumption where nodes are simply
assumed to have seen a message (a round of votes in this case) after a certain amount of time
has passed.

With this mechanism in place, the new primary ​will​ continue from the last proposal that received
⅔ majority vote in the second round. ​This is because view-change messages also include the 11

last proposal a backup has seen ⅔ majority vote in the first round​. The proposals in the 12

view-change messages dictate where the proposer must continue. Assuming fewer than ⅓
nodes are byzantine, one can show that if ​anyone​ has seen a ⅔ majority vote in the second
round, there must be at least 1 honest backup who successfully broadcasted a view-change
message indicating that they have seen ⅔ majority vote in the first round for that proposal. The
proof is an application of the pigeonhole principle and described in detail in 4.5.1 of the ​PBFT
paper​. 13

Takeaway
PBFT is a seminal classical consensus protocol employing 2 voting rounds for finality. It is in the
partially synchronous network and achieves the optimal ⅓ fault tolerance. Understanding at a
high level how 2 rounds of voting enable safe view-changes is the basis of all classical
consensus protocols. The details of PBFT are not so important and we’ll see soon how PaLa is
a strict improvement and simplification over the PBFT protocol.

11 In the original unmodified protocol, proposals since the last checkpoint need to be voted on again after
a view-change. I did not understand why this was necessary.
12 This is a crucial detail which I admit is not well spoken here. We’ll see something similar in the
Thunderella protocol.
13 Not surprisingly, the proof looks very similar to the argument we presented earlier of the ⅓ fault
tolerance bound in the partially synchronous case.

http://pmg.csail.mit.edu/papers/osdi99.pdf
http://pmg.csail.mit.edu/papers/osdi99.pdf

PBFT is a message heavy algorithm. There are 3 rounds of messages and each message must
be sent to all other replicase. It thus has O(n​2​) message overhead where n is the number of
replicas.

Alternatives
PBFT employs the ​view-based​ approach to consensus where each view is run by a primary
leader who is in charge of creating new proposals. The ​ballot-based​ approach is based on the
Paxos consensus protocol and used in Federated Byzantine Agreement (FBA) protocols such
as the Stellar Consensus Protocol (SCP). In the ballot based approach, there is no explicit
leader. Instead anyone may share a proposal for a ​slot​ and, after consensus, the final value for
that slot is created from all agreed upon proposals (e.g. the union of all transactions of all
proposed blocks). This approach avoids censorship issues of having a single node responsible
for creating new proposals in the short term. The ballot based approach still employs two rounds
of voting to finalize a decision. As ThunderCore prioritize the performance of view-based
approaches, we do not go into details of the ballot based approach. For more information on
FBA and ballot based approach, please see the ​SCP paper​ and the timeless ​Paxos historical
document​.

https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf
https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf

Proof-of-Stake

Proof-of-Work Recap

Proof-of-Work, consensus is based only on computation power. Participation is fluid. Thus, from
the protocol standpoint, it is entirely ​permissionless​. Anyone with the capability of solving the
hash puzzle has a chance to contribute to consensus. This capability is in no way given to
anyone by the protocol itself. As more hash power joins the network problem difficulty goes up. 14

In economic equilibrium, problem difficulty scales with token value. Energy consumption goes
up and chance of mining a block per unit of hash power goes down.

Proof-of-Stake​ (PoS) protocols switch the participation requirement to be based on ​stake in the
underlying currency​ instead of hash power. This section introduces the major themes of PoS
and some of its variants.

Original Proof-of-Stake

The original usage of “Proof-of-Stake” refers to a class of Nakamoto consensus algorithms
where a node’s holdings or stake in the underlying currency is converted to virtual computation
power. The name is derived from its similarity to Proof-of-Work somewhat literally replacing the
“Work” with “Stake” in the algorithm. For example, the PoW mining problem might be changed
from:

hash(parent, nonce) <= difficulty

to something like:

hash(parent, address A) <= balance(address A) * time * difficulty

with the remainder of the protocol unchanged.

Since original PoS still uses the longest fork choice rule, the immediate issue is that it is easy for
nodes to “mine” blocks on many forks at once. This is byzantine behavior as honest nodes only
mine on a single longest block. However, since there is no ​cost​ for acting byzantine, we can not
assume nodes will not do so. It is strict economic gain as more mined blocks on different forks

14 The financial barriers of obtaining this capability (hash power) is a different story.

means a higher chance of being included in the canonical chain and earning block rewards.
This is referred to as the the ​nothing at stake​ problem and can be addressed with ​slashing
which we’ll discuss soon. There are still other ​difficult to address vulnerabilities​.

Committee based Proof-of-Stake

The term Proof-of-Stake has also been applied to classical consensus protocols that use some
staking based scheme for choosing its participants. We call the chosen set of participants a
committee​ and individually we refer to them as ​voters​. In these protocols, participants put down
a deposit in the underlying currency for the right to become a voter in the network. The
committee is responsible for creating new blocks on the blockchain. The nothing at stake
problem can be addressed by slashing a voter’s deposit when there is cryptographic evidence
of the voter’s bad behavior.

Though we consider this bad use of Proof-of-Stake, it seems far past the point where this usage
can be corrected. Thus Proof-of-Stake refers to a broad class of blockchain protocols where
participation is based on stake which include both Nakamoto and classical consensus protocols.

Other approaches include ​permissioned​ networks where the set of consensus nodes are known
beforehand. A similar (arguably indistinguishable) approach is to allow each individual node on
the network to choose the nodes they trust to achieve consensus. Public networks like Stellar
and Ripple deploy the latter. Permissioned networks are the obvious choice for private
consortium chains.

Long-Range Attacks

With staking, deposited stake must be released eventually at which point it can no longer be
slashed. After this point, voters (who may have moved or sold their stake) can release their old
private keys with no consequence. If an attacker obtains enough of these keys (by purchasing
them for example) they can readily create a new blockchain that forks the current one from a
long time ago. This is referred to as a ​long range attack​. Thankfully, there is a ​straightforward
defense​. Nodes on the network will simply reject any blockchain that doesn’t extend recently
from their own blockchain thus thwarting this attack entirely. For new nodes joining the network,
the only solution is to pick a set of trusted nodes to provide them with the canonical chain. In
practice, this solution seems satisfactory at least when considering the fact that the $$$ value
(of a cryptocurrency) is a social construct to begin with.

Delegating Stake

PoW mining pools combine the hash power of many nodes distributing risk and rewards across
all participants. Analogous to this, PoS participants may delegate their stake to another
consensus node on the network who will take a cut of the rewards. Delegation is simpler than

https://bitfury.com/content/downloads/pos-vs-pow-1.0.2.pdf
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/

pool mining as it does not involve the delegator to run any of their hardware. Delegation might
be built directly into the protocol or trustlessly mediated by a smart contract. If it’s not supported
in the protocol, delegation can also be done off-chain with a trusted service provider. Most PoS
chains support non-custodial (trustless) delegation and there are many ​staking as a service
providers​ out there to make delegating your stake even easier.

DPOS BFT

For clarity, we will briefly talk about the ​DPOS BFT consensus algorithm which is a simple 15

classical-like consensus algorithm. DPOS BFT takes the top 21 (say) highest staking nodes
(which include delegated stake from other users) to be nodes participating in consensus.
Consensus is achieved through round robin proposing and voting. Offline proposers are skipped
after sufficient time. Two round robin rounds of proposed blocks are needed to finalize a block.
DPOS BFT is the name of this consensus algorithm. The name also refers to the mechanism of
delegating stake to choose participants which is a feature available in many other PoS
blockchains. Similar ​consensus​ algorithms include ​Aura​ and ​Clique​. These algorithms are also
known as Proof-of-Authority, which refers to the participants being chosen based on a-priori
authority and says nothing about the mechanism for consensus.

Security

As of writing, PoW blockchains still hold a large majority of the cryptocurrency market cap and
proponents advocate for their completely permissionless and decentralized nature. From an
economic standpoint, PoW networks fall short of PoS in terms of security.

The main issue is that the cost of attack is proportional only to lost mining time. Since a longer
adversarial fork becomes the canonical chain, any rewards lost are immediately returned. Thus
the cost of attack is proportional to rewards lost during the attack which are returned if the attack
succeeds.

With services such as online ​hash power markets​, coordinating such an attack is entirely trivial.
In addition, Volatile token prices means mining may not be consistently profitable. If mining not
profitable, there will be an excess of unused hash power (bitcoin ASICS have few other uses)
that could be sold for for a profitable attack. Hash power owners who have withdrawn their
bitcoin would gladly take a premium in exchange for renting their unused hardware. In practice
we’ve already seen several ​51% attacks on major a PoW chains​.

Proof-of-Stake, subverts these issues by relying on deposits and slashing schemes to
disincentivize attacks. The cost of attack in a PoS blockchain can be precisely set by the deposit

15 This single 7 character acronym blurs the terminology for delegating stake with a consensus algorithm,
a Nakamoto style consensus algorithm with a committee selection policy, and a fault tolerance mode with
finality guarantees 🥇.

https://defiprime.com/staking
https://defiprime.com/staking
https://www.google.com/search?q=DPOS+BFT&oq=DPOS+BFT&aqs=chrome..69i57j0l2j69i60.1193j0j7&sourceid=chrome&ie=UTF-8
https://wiki.parity.io/Aura
https://github.com/ethereum/EIPs/issues/225
https://www.nicehash.com/
https://cryptoslate.com/prolific-51-attacks-crypto-verge-ethereum-classic-bitcoin-gold-feathercoin-vertcoin/

requirement and slashing amount. In practice, these prices should be set so high that such an
attack would never be profitable. Thus, from an economic standpoint, ​PoS is more secure than
PoW​ by design. For the curious reader, we suggest ​this blog​ post for a more detailed discussion
on the design philosophy of PoS.

Summary

So we see there are many ways to look at consensus and choosing participants for consensus.
In Nakamoto protocols, the mechanism for choosing participants and consensus are
inseparable. It seems that in continuing a dialog that started with Bitcoin, many non-Nakamoto
blockchain protocols still combine these two concepts and add to the confusion. The usage of
Proof-of-Stake to refer to a means of choosing participants rather than a mechanism for
consensus is perhaps for a similar reason. We hope this brief exposition here will clarify some of
the ambiguous terminology.

https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51

PaLa
The following adapted from the ThunderCore Whitepaper. It is extended with more details and
explanations.

PaLa is a blockchain consensus protocol based on partially synchronous network assumptions
and tolerates up to ⅓ corruptions. Below, we describe a simplified version of the protocol called
Basic Pala​ to illustrate its simplicity and effectiveness. Basic Pala is the foundation for
understanding the complete version of our protocol which is outlined afterwards. The full details
of the PaLa protocol are readily available in the ​PaLa research paper​.

Setup
Assume a fixed ​committee​ of ​voters​. How these nodes are chosen is described later. Each
node maintains a ​local epoch​ counter ​e​ and a local view of the blockchain. Each block contains
an epoch number, a list of transactions, and the hash of its parent block. The epoch number of a
chain is defined as the epoch number of the last block in the chain. Each epoch has a single
unique ​proposer​ which is known to all nodes in the network. In this simplified version, every
voter is also a proposer for some epochs.

Consensus proceeds one block at a time. Proposers propose a block if they are eligible to
propose in the current epoch. Voters vote on blocks if a set of conditions are met. A collection of
⅔ of the committee’s votes on a single block is a ​notarization​ for that block. If there is a
notarization for a block, the block is ​notarized​. Each block has an epoch which advances
monotonically. If an epoch ​e​ block has an epoch ​e-1​ parent, the block is a ​normal block
otherwise it is a ​timeout block​. A block is ​finalized​ if it is the parent of a notarized normal
block. A finalized block is part of the immutable history of the blockchain and indicates
consensus has been achieved.

Protocol
Each node keeps their local current blockchain ​fresh​. Whenever it sees a valid blockchain that
is ​fresher ​than its current chain–it has higher epoch number than the epoch number of their
current chain–they switch to this chain. A valid blockchain should satisfy the following
conditions:

1. The epoch numbers of all blocks should be strictly increasing.
2. Every block in the blockchain is notarized

In addition each node will do the following:

● Increase local epoch counter to ​e​ if

https://eprint.iacr.org/2018/981

○ Their current local epoch is smaller than ​e​ AND
■ They see a notarized chain for epoch ​e​-1 OR
■ They see at least ⅔ committee members’ validly signed ​clock​(​e​)

messages.

● If they have stayed in epoch ​e-1​ for more than a fixed amount of time
○ Broadcast the message ​clock​(​e​).

● If they are the proposer of epoch ​e

○ If their current chain ends with the block of epoch ​e-1​, immediately propose a
new block for epoch ​e​ extending their own current notarized chain

○ If the epoch number of their current blockchain is ​e ​(due to a timeout), wait for a
fixed period of time (hoping to receive a fresher notarized chain) and propose a
new block for epoch ​e​ extending their own current chain.

○ Note that it is possible for a notarized block to be orphaned if it arrives after the

fixed delay.

● On receiving a block proposal for epoch ​e​ from the proposer of epoch ​e​, sign the

proposal and multicast the signature if the following conditions hold:
○ They have seen the notarization for the parent block of the proposal.
○ The block is at least as fresh as their current chain at the beginning of epoch ​e​.
○ They have not signed any other block for epoch ​e.

● A node reports a block as finalized if it is the parent of a notarized block

With these simple rules, the PaLa consensus protocol achieves liveness and consistency. The
PaLa protocol is simple and rigorously proven. PaLa is designed based on partially synchronous
network assumption. It is inherently partition tolerant and responsive. If there is ever a network
partition, there is only a temporary outage in liveness. It will resume progress when the partition
heals with no conflict in state.

Committee Reconfiguration
In a real world Proof-of-Stake blockchain, we want to periodically switch committees as stake
changes hands in the system. The PaLa consensus algorithm supports fast and seamless
committee switches. The basic idea is that the previous committee must finalize a special
reconfiguration block​ before the next committee may serve to ensure consistent continuity.

The following assumes a mature understanding of the PaLa consensus protocol so don’t be
alarmed if you’re reading it for the first time. It’s nonetheless published here for readers to revisit
as reference in the future.

So far, PaLa only guarantees consistency history with a fixed committee. It’s possible, just
before a reconfiguration, that the previous committee might finalize an extension of the
reconfiguration block. Remember 2 notarized ​normal​ blocks in a row are needed for the first one
to be finalized. Thus timeouts allow for multiple blocks in a row to be notarized and finalized all
at once when the 2 normal blocks condition is met. If the next sessions extends from the
reconfig block, the extended finalized chain from the reconfig block is lost and we lose
consistency. There is no guarantee the new committee will see this extended finalized chain
and so we can not require that they extend from it.

ThunderCore’s implementation always extends from the reconfig block and requires that all
blocks after the reconfiguration block must be empty. They only serve to finalize the
reconfiguration block, and it doesn’t matter if their content is lost.

Another solution solution is to have blocks after a reconfiguration block be finalized by the ​next
committee.

Doubly Pipelined PaLa
The full PaLa protocol described in the paper is called ​Doubly Pipelined Pala​ which supports
the ​proposal pipeline feature. This version allows for consensus to proceed ​k​ blocks at a time 16

where ​k​ is a protocol set parameter. The proposal pipeline allows newer blocks to be buffered
while older ones are still being voted on. Based on empirical testing, we found that when
network latency is high relative to block times, a higher ​k​ value can improve throughput volume.

Since a single proposer may propose multiple blocks in sequence, a more nuanced block
numbering scheme is needed. Blocks now have an ​epoch​ and ​sequence​ number. Proposers
are chosen based on the epoch as before and each new proposal from the same sequence
advances the sequence number which starts from 0 at the beginning of each epoch. A block is
now finalized if its ​k’th​ child in the same epoch is notarized.

16 Also referred to as “doubly streamlined” in an unpublished version of the PaLa paper. The author of this
article prefers to term “proposal pipeline”.

The remainder of the protocol is very similar to PaLa. The proofs for consistency and liveness
also follow suite. We’ll dive into the details of this in a future blog post comparing PaLa and
Hotstuff.

Performance
From a performance standpoint, PaLa is a significant improvement on prior classical consensus
protocols that require two rounds of voting per block and O(n​2​) messages. PaLa makes use of
the pipelined BFT idea where the second round of voting in this classical consensus protocol is
piggy-backed on the first round of voting for the next block. The active proposer uses BLS
multi-signatures to collect votes and distribute notarizations. Together with a
multi-hub-and-spoke network topology, PaLa can achieve consensus with just O(n) messages.

Takeaway
PaLa is the culmination of decades of distributed consensus research (spurned and funded by
the emerging cryptocurrency paradigm). It brings together bold ideas from many protocols
elegantly combining them into a single efficient and simple protocol. This should be apparent
from the very short description of the algorithm presented above. The ​PaLa research paper
provides simple and rigorous proofs to its security properties based on realistic network
assumptions.

Newer BFT consensus algorithms such as ​Tendermint​, ​FBFT​, ​Casper FFG​ and ​Hotstuff​ use
many of the same innovations as PaLa. However, none of these algorithms are as simple,
elegant and optimal as PaLa.

https://eprint.iacr.org/2018/981.pdf
https://tendermint.com/docs/introduction/what-is-tendermint.html
https://harmony.one/whitepaper.pdf
https://arxiv.org/abs/1710.09437
https://arxiv.org/abs/1803.05069

We expect BFT consensus to be equated with PaLa the same way Distributed Hash

Table (DHT) is equated with Kademlia.

The ​reference implementation​ of the PaLa consensus protocol is already released and contains
thorough documentation and educational material.

https://github.com/thundercore/pala

Conclusion and More!
Wow, awesome job for making it to the end! Are you expecting a reward? Knowledge is a
reward in and of itself!!! This is just the beginning. We hope you are better equipped to navigate
the world of blockchain consensus. For more information about ThunderCore please check out
our ​website​ or drop us a line ​@ThunderProtocol​.

Of course, this conclusion is not the conclusion! Below are follow-up articles on still more
consensus protocols. More will be added over time. Let us know what you’re interested in
seeing next!

https://www.thundercore.com/
https://twitter.com/thunderprotocol?lang=en

Thunderella
The major innovation of the ​Thunderella consensus protocol​ is the combination of classical
consensus with Nakamoto’s chain-style consensus, which brings the best of both worlds.

Classical protocols are extremely fast at a small scale. Transactions can be confirmed at speeds
approaching centralized deployments. However, these protocols can be complex, difficult to
implement, and do not scale in number of participants. In contrast, Nakamoto protocols are
simple, have additional robustness properties, can scale in participants indefinitely, but take
minutes to confirm transactions with high probability.

Recall in our description of PBFT, a view-change is executed if no proposal is seen from the
primary for a sufficiently long period of time. During a view-change, nodes exchange messages
to agree upon the following:

1. A view change has indeed happen
2. What the state of the network is just before the switch

In effect, nodes are coming to consensus ​without​ a primary proposer. The key observation for
the Thunderella protocol is that we can rely on a Proof-of-Work ​slow-chain​ for consensus when
it comes to 1. and 2. which we’ll call ​fallback ​and ​recovery​ respectively.

The Protocol
Assume a prior agreed upon set of accelerators and committee members (same as proposers
and voters). A simplified version of the Thunderella protocol, which creates blocks on the
fast-path​ can be described simply as follows:

https://eprint.iacr.org/2017/913.pdf

Fast-Path
1. The active accelerator signs a proposal (block) to be added to the blockchain (linearly

ordered log) and sends it to the committee.
2. Each committee member votes on the proposal by signing it if it is a valid extension of

their blockchain and returns their vote to the accelerator.
3. Upon collecting ¾ of the committee’s votes, the active accelerator combines them into a

notarization ​and broadcasts it.
4. If a notarization for a proposal is observed, that proposal is finalized and part of the

immutable history of the blockchain.

Slow-Chain
The slow-chain is another Proof-of-Work blockchain where consistency and liveness are
guaranteed. Here when we say something is “seen on the slow-chain” we mean that it is safe to
assume (by the finality assumptions of the slow-chain blockchain) that all participants of the
network have also seen it. In practice, this may mean waiting a few blocks for probabilistic
finality.

1. Every 100th fast-path blocks (say), a hash and notarization of the block must be posted
to the slow-chain in a timely manner. This is called an ​alive​ message.

a. This can be accomplished by including the alive message payload in the
slow-chain transaction data field (say).

b. Note, that anyone can post this alive message and alive messages can not be
forged as they require a valid notarization of the block.

Fallback and Recovery
1. When no new alive message is seen on the slow-chain after 20 slow-chain blocks (say)

the fast-path is down and recovery begins. Committee members stop signing new
proposals.

2. Recovery lasts for 10 slow-chain blocks (say) during which time participants will post a
valid most recently seen block hash and notarization to the slow-chain.

3. After recovery, the next accelerator chosen based on a round robin policy (say) comes
online and proposes from the latest block reported during the recovery phase.

Note that step 2. should look a little familiar. In the view-change sub-protocol of PBFT, replicas
(nodes) are required to send the last prepared (notarized) block in their view to coordinate the

recovery point. In comparison, by leveraging the slow-chain, this recovery coordination process
is simpler and more reliable (thus requiring weaker assumptions).

Yell Messages
As an additional tool for ensuring censorship resistance and liveness, Thunderella defines ​yell
messages​. Yell messages are fast-path transactions that are sent to the slow-chain. These
transactions are included in the fast-path by rules defined by the protocol (rather than the
propose-notarize process for regular transactions). Thus even during recovery, a finalized yell
message on the slow-chain is also a finalized fast-path transaction.

1. A user can wrap a valid signed fast-path transaction into a ​yell​ message (in the data field
of a slow-chain transaction say) and post to the slow-chain.

2. When the slow-chain block containing the yell message is finalized, committee members
expect to see this transaction appear on the fast-path. If it does not show up, fallback is
triggered and the protocol enters recovery.

3. During recovery, each node on the network extends their blockchain from the last
fast-path block based on yell messages they see on the slow-chain according a
deterministic set of rules. Since we can always rely on PoW consensus on the 17

slow-chain, every node independently arrives at the same extended fast-path.
4. Upon recovery, the new accelerator must extend from the extended fast-path chain in

the previous step.

In the full protocol description, Thunderella goes even faster by allowing for multiple outstanding
proposals (blocks that are not notarized). This trick is called ​proposal pipelining​ and it’s the
same trick used to improve throughput in PaLa. The full Thunderella protocol is described in the
Thunderella litepaper​.

17 The high level concept for yell messages is straightforward. However, the exact set of rules for yell
message is a crucial and nuanced implementation detail.

https://docs.thundercore.com/thunder-litepaper.pdf

Takeaway
As Thunderella leverages a synchronous Proof-of-Work blockchain with ½ fault tolerance for the
slow path, the voting threshold is ¾ which gives 50% fault tolerance for consistency on the
partially synchronous fast path. Typically a partially asynchronous could achieve at best ⅓ fault
tolerance for liveness as explained previously. However, by leveraging a synchronous
slow-chain for recovering from a failed accelerator, Thunderella also achieves ½ fault tolerance
for liveness. Note that the slow-chain need not be a PoW chain. However, the security of the
protocol inherits the security of the underlying chain. For example, using a partially synchronous
classical consensus slow-chain will result in the protocol being partially synchronous and having
up to only ⅓ fault tolerance.

In practice, Thunderella provides confirmation after just 1 round of votes! With a PoW slow chain
such as Ethereum, recovery may take several minutes where progress is slow and expensive. If
the fast-path is reliable, recovery is rarely needed. The slow recovery issue can be addressed
by using a faster classical consensus blockchain for the slow chain. While it was originally
intended to be used as a layer 1 scaling solution for ThunderCore, Thunderella may be even
more appropriate for a layer 2 side chain with an appropriate cross-chain bridge between the
fast-path and slow-chain. For example, multiple untrusted operators (perhaps chosen through
staking an ERC20 token) could use Thunderella as a Plasma side chain and have one message
round finality!

